微藻具有同时实现生物固碳与生物制造双重目标的巨大潜力,但微藻大规模应用严重受限于规模培养困难与成本过高,主要原因在于目前应用的大多数微藻为单细胞藻。尺寸细小的单胞藻在规模培养时因易受轮虫等原生动物污染导致培养失败,同时细胞收获需要高速离心或膜过滤,采收成本高。因此具有优良工程性状的微藻选育成为微藻大规模固碳与生物制造的关键。
微生物制造工程中心独辟新径,将工程藻种选育目标聚集于丝状微藻,通过收集和筛选,构建了100余株丝藻真核微藻种子资源库。对包括黄丝藻、橘色藻、克里藻等多株高产油脂、色素、多糖等丝状微藻进行了系统的培养评价与生化分析研究。基于适配性原则,开展了针对丝微藻培养的开放式跑道池、管道反应器和生物膜贴壁培养反应器研究,解析了微藻在不同培养模式下的光碳传输过程机制、光谱与光足迹、光能利用与耗散特征,为进一步优化反应器设计与培养工艺奠定了基础。系统开展了高产油黄丝藻Tribonema sp.的光合自养与异养技术研究,建立了利用黄丝藻培养生产棕榈油酸(POA)和二十碳五烯酸(EPA)工艺。完成了黄丝藻(Tribonema minus)的全基因组测序与染色体精细图组装,建立了T. minus的多基因遗传表达体系,为下一步真核黄丝藻细胞底盘构建与合成生物改造奠定了基础。
相关文章:
Jianing Wang, Wenjun Zhou*, Lin Chen, Tianzhong Liu*, and Xuefeng Lu. Genetic engineering tools for the filamentous microalga Tribonema minus. Algal Research. 2024, 103697
Lu Li, Yongqiang Wang, Wenjun Zhou, Zhifei Yu, Guodong Luan, Lin Chen*, and Tianzhong Liu*, Xuefeng Lu. Light footprint of microalgae cultivation system addressed by modified Cornet model. Bioresource Technology.2024, 131295
Yongqiang Wang#, Lu Li#, Danyue Zhao, Wenjun Zhou, Lin Chen, Ge Su, Zhaohui Zhang*, Tianzhong Liu*.Surface patterns of mortar plates influence Spirulina platensis biofilm attached cultivation: Experiment and modeling. Algal Research. 2023, 103079
Lu Li#, Yongqiang Wang#, Lili Gao, Wenjun Zhou, Lin Chen, Zhaohui Zhang*, Tianzhong Liu*.Experiments and cellular automata simulation reveal light/carbon transportation and growth mechanism of Chlorella vulgaris biofilm in attached cultivation. Chemical Engineering Journal. 2023, 141177
Yan Zhang, Hui Wang*, Ruigang Yang, Lihao Wang,Guanpin Yang, Tianzhong Liu*.Genetic Transformation of Tribonema minus, a Eukaryotic Filamentous Oleaginous Yellow-Green Alga. Int. J. Mol. Sci. 2020, 21(6), 2106
Wenjun Zhou, Hui Wang, Lin Chen, Wentao Cheng, Tianzhong Liu*.Heterotrophy of filamentous oleaginous microalgae Tribonema minus for potential production of lipid and palmitoleic acid. Bioresource Technology.2017, 250-257